
Inference in Probabilistic Graphical Models by Graph Neural Networks -
Reproduction and Extension

Clemence Granade 1 Anita Kriz 1 Alireza Dizaji 1 Anthony Gosselin 1 Jeremy Qin 1

Abstract
Although exact inference in Probabilistic Graphi-
cal Models (PGMs) is possible on relatively small
graphs and in tree-like graphs by using message
passing algorithms such as Belief Propagation
(BP), performing these tasks on graphs of arbi-
trary size and connectivity is computationally ex-
pensive and often intractable. Methods like BP
can be used for approximate inference but gen-
erally struggle in loopy graphs or graphs with
far-reaching node dependencies. Although used
in different applications, there is a striking paral-
lel between the fundamental concept of message
passing in PGMs and Graph Neural Networks
(GNN). This naturally gives way to using GNNs
for approximate inference in PGMs by mapping
nodes in PGMs to nodes in GNNs. In this work,
we compare BP with GNN methods both in tree
and non tree graph structures. To extrapolate the
need for importance weighing in graph structures,
we explore the use of soft attention in GNNs. Ex-
panding on the works of Yoon et al. (2019), our
work demonstrates that using this mechanism in
the GNN outperforms its variants and BP on vari-
ous graphs. Our code is publically available here1.

1. Introduction
A common task when using a probabilistic graphical model
(PGM) is to compute marginal probability distributions
pi(xi) at one (or each) node xi of the graph. This value
can provide insights into the uncertainty and likelihood of
that node on its own, regardless of other nodes in the graph.
For example, given a graph containing information about a
diagnostic test, disease, and symptoms, the marginal proba-
bility of the test results is crucial in understanding outcomes
in the context of disease prevalence and symptom onset.

However, as the complexity of a graph increases, exact in-
ferences of this kind become computationally intractable.
Consider having to marginalize out |N | nodes, each that
can take on k values. This requires the summation of k|N |

1GitHub Repository

values, which even for relatively small graphs becomes com-
putationally expensive. For this reason, message passing
algorithms that build on dynamic programming methods
are required - one of which is the belief propagation (BP)
algorithm. Although developed for exact inference on tree
graphs, the BP algorithm can only be used as an approxima-
tion on non-tree graphs.

There is a remarkable parallelism between the message pass-
ing algorithms used in PGMs and Graph Neural Networks
(GNNs), a deep learning framework that can perform pre-
diction tasks on graph structures (Scarselli et al., 2009).
Notably, both share the fundamental concept of passing
messages between nodes. Given the end-to-end capabilities,
GNNs that use probabilistic information as features hold
significant potential in being able to approximate inferences
in PGMs. More specifically, the incorporation of non-linear
functions in its NN formulation has the ability to represent
complex relationships between nodes. Thus, by mapping
the nodes of a PGM to the nodes of a GNN, running ap-
proximate inference tasks can become feasible. Yoon et.
al (2019) use two different mappings from PGM to GNN
nodes, one which uses the factor nodes as the GNN nodes
and the other which uses the variable nodes themselves. The
intuition with the latter is that it may alleviate the represen-
tational power required when additionally mapping factor
nodes, allowing for greater flexibility.

Our main contributions are the following:

1. Firstly, we provide an in depth quantitative analysis of
BP compared to approximate inference via GNNs for
both tree and non-tree graph structures. We highlight
the theoretical reasoning of using these techniques and
their respective trade-offs in terms of accuracy and
computation time.

2. Secondly, we extend the work of (KiJung Yoon, 2019)
by considering different GG-NN (Zemel, 2017) archi-
tectures in order to find a balance between long-term
dependencies and importance of neighboring nodes.
We compared the performances of the models with
GRU and LSTM update functions and when incorpo-
rating a soft attention mechanism.

Inference in Probabilistic Graphical Models by Graph Neural Networks - Reproduction and Extension

Overall, our results establish the potential of rethinking BP
by using GNNs in PGM inference tasks.

2. Background
2.1. Undirected Probabilistic Graphical Models

Probabilistic graphical models are graph stuctures that en-
able the representation of joint dependencies through condi-
tional distributions between random variables. Undirected
graphical models G = (V,E) can be represented through
factor graphs. These undirected, bipartite graphs connect
individual variable nodes i ∈ V to factor nodes α ∈ F . The
former encode xi individual nodes and the latter encode the
interactions ψα(xα) between variable node groups xα. xα

contains all individual nodes i connected to the factor node
α. The product of these interactions defines the probability
distribution of the graph:

1

Z

∏
α∈F

ψα(xα)

with Z is the normalizing constant.

2.2. Binary Markov Random Fields

Our experiments were run on binary Markov random
fields, more particularly Ising models. These are undi-
rected graphs encoding random variables that follow the
Markov property with binary random variable nodes se-
lected x ∈ {−1,+1}|V | . Ising models were one of the
first Markov models to model the energy in a system ac-
cording to the atom interactions. Each variable node xi
has it’s intrinsic energy function as well the energy from
each interacting connected atom (Friedman, 2009). Re-
stricting to Ising models, the energy function is defined as
ψi(xi) = exp{bixi} and associated edge energy function
as ψi,j(xi, xj) = exp{Ji,jxixj}. Deriving the exact joint
distribution:

p(x) =
1

Z
exp(bx+ xJx)

with b composed of biases bi for all i ∈ V and J a sym-
metric matrix composed of Ji,j for all {i, j} ∈ E. For the
following experiments, b and J are selected at random.

2.3. Belief Propagation

Computing marginals (and thus conditionals) of a graph-
ical model using naive algorithms is extremely compu-
tationally expensive. Consider a graph with N nodes
X = {X1, X2, ..., XN} such that each node Xi can take on
k values. To obtain the marginal of a node Xi, the intuitive
solution is to marginalize out all other nodes from the joint

distribution:

P (Xi) =
∑
x1

∑
x2

. . .
∑
xi−1

∑
xi+1

. . .
∑
xn

P (X1, X2, . . . , Xn)

(1)
By examination of this equation, the problem becomes clear.
Computing the marginal of a single node requires comput-
ing N sums with k values to iterate through in each sum,
yielding a compute complexity of k|N |. Even for reason-
ably low values of both parameters, computation quickly
becomes expensive, and as the number of nodes grows, in-
tractable. Thus, there is a need for methods to compute and
approximate the marginal distributions that can reduce this
computation time.

Belief propagation, otherwise known as the sum-product
algorithm in coding theory, is a message-passing algorithm
that operates by retrieving messages associated with edges
in a graph and updating them recursively via local computa-
tions done at the vertices (Montanari, 2009). In other words,
BP uses dynamic programming to perform the recursion,
a method that can greatly reduce computation time. This
algorithm extends from the simpler elimination algorithm
for single queries by using a key insight: when passing mes-
sages from one node to another to compute their marginals,
we are re-using messages that will be used to compute an-
other marginal distribution. Therefore, if instead of finding
the marginal distribution of a single node Xi we want to
know how all the nodes are distributed, we do not have to
run the elimination algorithm N times. Instead, if there
exists an edge between nodes Xi and Xi+1, we simply com-
pute two messages, the message µi→i+1 and µi+1→i. If
we store all these messages throughout the graph, we can
compute any marginal of any node that we want.

By operating BP on factor graphs, a bipartite representa-
tion where edges are only between factors and variables,
there are two kinds of messages that need to be constructed,
variable-to-factor µi→α and factor-to-variable µα→i:

µi→α(Xi) =
∏

βinNi\α

µβ→i(Xi) (2)

µα→i(Xi) =
∑

Xα\Xi

ψα(Xα)
∏

j∈Nα\i

µj→α(Xj) (3)

where Ni are the neighbors of variable node Xi (these are
the factors that involve Xi) and Nα are the neighbors of fac-
tor nodes α (these are the variables that are directly coupled
by ψα(Xα) (KiJung Yoon, 2019). These two equations can
be jointly interpreted as messages sent out by factor nodes
to other factor nodes. Firstly, the incoming messages to a
factor node α is computed as µi→α by multiplying all the
incoming messages from the connected factor nodes. In the
next step, these incoming messages are multiplied by the

Inference in Probabilistic Graphical Models by Graph Neural Networks - Reproduction and Extension

factor node αs, and marginalized over all the variable nodes
involved in that factor.

However, there is one significant caveat: BP can only extract
exact marginals on tree structures (Montanari, 2009). This is
possible due to the non-cyclic nature of trees that allow mes-
sages to be passed unidirectionally and without conflicting
information. Although the elimination algorithm itself can
be generalized to any graphical model, it can only compute
a single query. Moreover, the complexity of the algorithm
is completely controlled by the elimination ordering of the
variables, and this in itself is a computationally intensive
process. Due to its efficiency and intuitive formulation, re-
cent work has extended BP to approximate marginals for
graphs with cycles, otherwise known as loopy belief prop-
agation. This general case algorithm can be summarized
with two steps:

1. Initialize the messages between variables and factors
with a uniform distribution

2. At every step t, compute an updated message using the
previous messages, until convergence (further iteraions
no longer change the messages significantly):

µ
(t)
i→α(Xi) =

∏
β∈Ni\α

µ
(t−1)
β→i (Xi) (4)

µ
(t)
α→i(Xi) =

∑
Xα\Xi

ψα(Xα)
∏

j∈Nα\i

µ
(t−1)
j→α (Xj) (5)

In other words, messages are being passed around until
convergence. However, convergence is not guaranteed in
non-tree graphs. The intuition for this is that since BP is a
local algorithm, it should be successful whenever the under-
lying graph is locally a tree. However, the trade-off with
being able to define distributions locally is indeed that far
apart variables become uncorrelated. Thus, in graphs where
far apart variables are important in understanding the un-
derlying distributions, BP will perform poorly (Montanari,
2009). Moreover, cycles can introduce ambiguity in mes-
sage passing, and the iterative updates may not converge
or may converge to incorrect results.This analysis of BP
naturally leads to the need for alternate methods that can im-
prove approximation performance on non-tree graphs while
remaining computationally tractable.

2.4. Graph Neural Networks

Graph Neural Networks, a deep learning framework that
uses the structure and feature information in a graph, allows
for complex transformations between nodes. Therefore,
GNN can encode probabilistic information about variables
in the graphical model as nodes and send and receive mes-
sages (that are learned via non-linear transformation) about

the probabilities. Finally, after training, a nonlinear decoder
could be used to approximate the marginal probabilities
from each node. Initially aligned with the methods from
(KiJung Yoon, 2019), we trained a Gated Graph Neural
Network (GG-NN) (Zemel, 2017) updating nodal hidden
states at each time (t). The non-linearities are applied to
obtain the hidden state vectors h(T)

i for each of the GNN
node vi. The hidden state vectors are initialized at 0 and
updated each time step t, with the messages received from
neighboring nodes. For each set of connected {vi, vj} in
the GNN, a message m

(t+1)
i→j from vi to vj is sent at time

t+ 1:
m

(t+1)
i→j = M

(
ht
i,h

t
j , eij

)
(6)

with M here is a multi-layer perceptron (MLP) with recti-
fied linear units (ReLU), ei,j edge labels/properties between
the nodes vi, vj and N(j) the neighboring nodes of vj . At
time t, the messages received by a node vi is the sum of all
incoming messages:

m
(t+1)
i =

∑
j∈N(i)

mt+1
j→i (7)

withN(i) the indices of neighboring nodes for node vi. The
update function for a hidden state vector at time t for a node
vi is defined by:

h
(t)
i = U(h(t−1)

i ,m
(t)
i)

with U a specified update function, either a Gated Recurrent
Unit (GRU) or an Long-Short Term Memory (LSTM). At
the final state T the output marginals ŷ are obtained from:

ŷ = σ(h(T))

This method proceeds from a variation of (KiJung Yoon,
2019) derived from (Zemel, 2017)’s GG-NNs. The training
is done using backpropagation minimizing the loss func-
tion L(y, ŷ) (in this work, we use cross-entropy loss which
will be detailed in a later section). Given the architecture
of GNNs, it is natural to think of how to extend it to the
task of inference in PGMs. GNN nodes can encode proba-
bilistic information about variables in the graphical model
by sending and receiving messages. These messages are
learned via nonlinear transformations that allow for complex
relationships between nodes. With these parallels between
message passing algorithms in PGMs and GNNs, and the
potential of GNNs to learn probabilistic information in a
computationally efficient way, the next point of discussion
would be: how can we map the nodes of a PGM to nodes
in GNNs? As shown in Figure 1a, (KiJung Yoon, 2019)
describe two different mappings that can be used.

2.4.1. MESSAGE MAPPING

The first mapping as shown in Figure 1b more closely re-
sembles the structure of conventional BP, where the node in

Inference in Probabilistic Graphical Models by Graph Neural Networks - Reproduction and Extension

Figure 1. Mappings of PGM nodes into GNN nodes

the GNN corresponds to the message µi,j . Thus in a factor
graph, this is just the factor itself. As demonstrated in 1b,
since messages flow bidirectionally, there are two messages
per pairwise factor. To compute the message from variable
node vi to vj in the PGM using the GNN updates described,
we have the following updates at each iteration t:

m
(t+1)
i→j = M

 ∑
k∈Ni\j

htk→i, eij

 (8)

Where the hidden states are aggregated by summing over all
hidden states involving variable node vi (i.e. its neighbors).
The hidden state is then updated by:

h
(t+1)
i→j = U(h(t)i→j ,m

(t+1)
i→j) (9)

After convergence, the node marginals can be readily ex-
tracted. For example, to find the marginal of a variable node
Xi, the hidden states of all its neighbors are summed over to
obtain the hidden state of nodeXi, representing its marginal
distribution in this case:

p̂i(Xi) = R

∑
j∈Ni

hTj→i

 (10)

2.4.2. VARIABLE MAPPING

The second possible mapping, as shown in Figure 1c, uses
the variable nodes themselves as the GNN nodes. Given this
formulation, there will be no hidden states that correspond
to the factor nodes (and thus they will not be updated). The
idea is that the factor nodes are still influencing the inference
as they are embedded in the edges of the GNN. By relying
on these parameters being passed into the message function
on each iteration, we can avoid the representational power
on the underlying factor nodes. Thus, the equations for
updates are:

m
(t+1)
i→j = M

(
hti, h

t
j , eij

)
(11)

Where the hidden states now directly correspond to their
variable node in the PGM. The messages are then aggregated
into a single message for the destination node;

m
(t+1)
i =

∑
j∈Ni

m
(t+1)
j→i (12)

Finally, the hidden state is updated by:

h
(t+1)
i→j = U(h(t)i ,m

(t+1)
i) (13)

Given the one to one mapping of variable node to GNN node,
the readout can be obtained readily from the corresponding
GNN node, hv:

p̂i(Xi) = R(hTi) (14)

2.5. Integrating Information from Past States

The learning method for our model is done through a time-
sequential update of each node, using the update function
U with which certain information from previous states is
conserved, forgotten and combined with the new message
information. To do this, we used a special type of GNN,
Gated Graph Neural Networks. More specifically, we con-
sidered using both a Long Short Term Memory (LSTM) cell
as well as a Gated Reccurent Unit cell. In addition to this,
we also explore the use of soft attention in our work.

We implemented the LSTM and GRU as update function
to regulate the information selection from time t to t + 1,
as update functions. LSTMs were developped to solve the
vanishing gradient problem for traditional recurrent neural
networks (RNN) by incorporating specialized memory cells
and gating mechanisms (an input gate, a forget gate and
an output gate). These gates allow LSTMs to selectively
retain information over time, enabling the model to capture
and remember long-term dependencies within the sequential
data in a selective manner. The GRUs, used in the imple-
mentations done by Yoon (KiJung Yoon, 2019) were built
as a variant of the LSTM architecture. They also exploit
the gating mechanism to selectively include and pass on
information. The memory cell is composed of an update
gate, that combines the forget gate and the input gate, and of
a reset gate. Both are known for solving the vanish gradient
problem for short-term context and perform similarly well
(Chung et al., 2014).

While both were a great advance from traditional RNNs,
they struggle with long-term contextual learning and long-
run vanishing gradient. Both benefited from attention mech-
anisms which enable the model to focus on specific elements
within the graph, assigning varying degrees of importance to
different nodes during the sequential update process through
a trained weighting process. We do this by using a MLP
layer with LeakyRelu activation function that learns the im-
portance of each messages and scale them with a Softmax

Inference in Probabilistic Graphical Models by Graph Neural Networks - Reproduction and Extension

function so that the weights sum to one. Through a weighted
combination of these components, attention mechanisms al-
lows the model to selectively consider relevant nodes. This
adaptability and selective attention is useful in scenarios
where certain nodes or connections play a more important
role in the sequential evolution of the node data update.

3. Experiments
3.1. Graph Selection and Task Settings

To understand how the two GNN methods work for approx-
imate inference compared to BP, we strategically selected
graph structures to emphasize their differences by choosing
both sparse and highly connected graphs including grid and
tree structures.

Each graph structure was generated with |N | = 9 and
|N | = 16 nodes, where each node xi ∈ {+1,−1}. The
6 graph structures of interest are shown in Figure 2. For
data generation, we used the code-base provided by (Lingx-
iao Zhao, 2019) that can be found here. To compare the
performance and generalization capability of the different
methods experimented on, we defined two different task
settings.

• In-sample: each GNN implementation was trained and
evaluated on each graph structure type individually.

• Combined: each GNN implementation was trained on
a combined dataset of 13 graph structures (structures
defined in (KiJung Yoon, 2019)), and evaluated on the
6 graphs of interest.

With regards to the in-sample experiments, for each graph
structure and size set, we generated 5000 training and 1000
testing samples. For the combined experiments, we gen-
erated and combined 100 training samples of each graph
structure (13 total structures) and 100 test samples. Using
their codebase, the true marginal values were generated with
exhaustive enumeration of states.

3.2. Tested Algorithms

We compared the BP algorithm to different implementations
of GNNs with both the Message and the Variable Mapping.
As presented above, the GNNs followed GG-NN architec-
tures and we compared for each mapping a GNN with a
GRU update function, a GNN with an LSTM update func-
tion. Additionally, for Message mapping we implemented a
GNN with GRU update function coupled with an additional
attention layer.

The GNNs where trained using the cross entropy loss:
L(p, p̂) = −pi(xi) log(p̂i(xi)) between exact and esti-
mated marginals.

Figure 2. Explored Graph Structures. From left to right starting
from the top: ”star”, ”path”, ”cycle”, ”grid”, ”wheel” and ”FC”.

3.3. Computational Complexity Analysis

Additionally, evaluate the GNNs robustness with regards
to inference time complexity. In addition to performance
saw it valuable to track and compare the total inference
time complexity of these models, in comparison to BP. All
inference experiments run on a single laptop (cpu: AMD
Ryzen 7 5700u).

4. Results
We obtain the ’In-sample’ and ’Combined’ model perfor-
mance results as well as the time complexity for ’Combined’
inference, presented respectively in 3,

4.1. In-Sample Performance

The in-sample results are presented in Figure 3. The GNNs
with variable mapping and message mapping are identified
as ”Var” and ”Msg”, respectively. We quantify performance
by taking the negative log10 of the average Kullback-Leibler
divergence between the exact and estimated marginals:

performance = − 1

N

N∑
i=1

log10(DKL[pi(xi)||p̂i(xi)])

(15)

We observe that the best performance results across all graph
structures of all sizes are shared between two of our pro-
posed extended GNN models: the message mapping GNN
with LSTM update function and the message mapping GNN
with additional attention layer: ”Msg lstm” and ”Msg attn”,
respectively. Our intuition behind this is that the LSTM and
attention layer can increase the capacity of GNNs for mod-
eling the dependencies, specially between long and complex
graphs.

We note that BP is not exact even on tree graphs. The
authors of the BP implementation that we based our tests on
observed similar results and stated: ”We thoroughly checked

https://github.com/sunfanyunn/pgm_graph_inference

Inference in Probabilistic Graphical Models by Graph Neural Networks - Reproduction and Extension

Figure 3. In-sample experiment: GNNs trained on separate individ-
ual graph structures and sizes (n=9 & n=16). Performance reported
as negative log10(KL) w.r.t. ground-truth marginals.

our implementation and attribute this to accumulation of
numerical error” (Lingxiao Zhao, 2019). We have also
carefully verified the implementation without finding any
errors, so we conclude likewise.

4.2. Combined Performance

The ”combined” results are presented in Figure 4. The
GNNs trained on the combined dataset of 13 graph struc-
tures were able to generalize to the different graph types and
demonstrate similar performance results as the in-sample
case (Figure 3). Figure 4 also showcases the reported BP
performance from the reference paper (KiJung Yoon, 2019)
(”BP ref” in the figure). Comparing with the reference BP
performance, we note that BP performs best on simple tree-
like graphs, but underperforms relative to the GNNs on the
loopier graph structures.

4.3. Computation Time

Here we compare inference times of the various methods
on the small graphs in Figure 5. We observe that BP per-
forms faster on the sparse graphs (”star” and ”path”), but
as the graphs get denser, its computation grows exponen-
tially, while the GNNs perform increasingly and signifi-
cantly faster. Akin to the performance results presented
in the previous section, the GNNs scale better than BP to
complex graphs.

5. Conclusion and Future Directions
In this work, we experimented with how GNNs perform
at inference tasks, particularly taking the marginal distribu-

Figure 4. Combined experiment: GNNs trained on combined
dataset. Performance (- log10(KL)) on different graph types
(n=9 & n=16). BP performance as reported in reference paper
labeled as ”BP ref”

Figure 5. Average graph inference time (in milliseconds) on small
(n=9) graph structures for each method.

tion of each variable, compared to belief propagation. To
make a fair comparison, we thoroughly experimented with
different aspects, including different graph dependencies
and complexities. We observed that the GNNs perform
far better than belief propagation whenever we increase the
complexity of graphical models all the while remaining com-
putationally efficient. For BP, on the other hand, the time
complexity grows exponentially and the performance drops
significantly. We integrated GNNs with different update
functions, particularly LSTMs and attention layers, which
boost the performance on different inference tasks, an idea
that was not examined in the original paper. For future devel-
opment, we are interested in reformulating other inference
tasks, such as MAP and MLE, with GNNs. Moreover, the
main focus of this work was on the binary graphical models,

Inference in Probabilistic Graphical Models by Graph Neural Networks - Reproduction and Extension

extending to non-binary ones is also a logical and interesting
next step.

References
Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. Empirical

evaluation of gated recurrent neural networks on sequence
modeling. 2014.

Friedman, D. K. N. Probabilistic Graphical Models, princi-
ples and techniques. Oxford University Press, 2009.

KiJung Yoon, e. a. Inference in probabilistic graphical
models by graph neural networks. 2019.

Lingxiao Zhao, Ksenia Korovina, W. S. M. C. Approximate
inference with graph neural networks. 2019.

Montanari, M. M. A. Information, Physics, and Computa-
tion. Oxford University Press, 2009.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2009.
doi: 10.1109/TNN.2008.2005605.

Zemel, Y. L. R. Gated sequential neural networks. 2017.

