Rethinking Belief Propagation: Can Graph Neural Networks Take the Lead?

Anita Kriz¹, Clemence Granande¹, Anthony Gosselin¹, Jeremy Qin¹, Alireza Dizaji¹ 1 Mila

Problem: Performing inference tasks on graphs is HARD It is possible on trees...

X Naïve Marginalization: in $O(k^{|N|})$

Introduction

$$
P(x_i) = \sum_{x_1 \in X_1} \dots \sum_{x_N \in X_N} P(x_1, x_2, \dots, x_N)
$$

 $\sqrt{\text{Belief Propagation (BP) in } O(|N|)}$:

- May not converge, even as $t \to \infty$
- May not have a closed-form solution
- May not be accurate due to the complex dependencies in graph

• Initiate message passing at leaves

• Propagate and Store mes-

sages up to the root and back

... but not on graphs in general Can approximate: run BP for t iterations, BUT:

Research Question: How can we find better approximators for inference tasks in Probabilistic Graphical Models (PGMs)?

Background

 X_4

Belief Propagation

 X_5

Can be generalized to graphs with loops, i.e. loopy BP:

 X_6

h $(t+1)$ $\frac{(t+1)}{i\rightarrow j}=\mathcal{U}(h)$ (t) $\stackrel{(t)}{i\rightarrow} _j,m$ $(t+1)$ $\binom{(t+1)}{i\rightarrow j}$ (5) h

 \overline{m} $(t+1)$ $\stackrel{(t+1)}{\stackrel{\longrightarrow}{i \rightarrow j}} = \mathcal{M}\left(h_i^t\right)$ $_{i}^{t},h_{j}^{t}$ $\big(\begin{matrix} t \ j , e_{ij} \end{matrix} \big) \quad (7)$ \overline{m} $(t+1)$ $\binom{(t+1)}{i} = \sum m$ $i \in N_i$ $(t+1)$ $j\rightarrow i$ (8)

 (t)

 $\binom{u}{i}, m$

 $(t+1)$

 $\binom{(t+1)}{i}$ (9)

$$
\mu_{i \to \alpha}^{(t)}(X_i) = \prod_{\beta \in N_i \setminus \alpha} \mu_{\beta \to i}^{(t-1)}(X_i)
$$
(1)

$$
\mu_{\alpha \to i}^{(t)}(X_i) = \sum_{X_{\alpha} \setminus X_i} \psi_{\alpha}(X_{\alpha}) \prod_{j \in N_{\alpha} \setminus i} \mu_{j \to \alpha}^{(t-1)}(X_j)
$$

where N_i are the neighbors of variable node X_i
and N_{α} are the neighbors of factor nodes α

 $\binom{T}{i}$ (10)

GNNs

Use a message passing method m $(t+1)$

PGM to GNN Mapping

Variable Nodes to GNN Nodes

$$
m_i^{(t)} = \sum_{j \in N(i)} m_{j \to i}^{t+1} = \sum_{j \in N(i)} \mathcal{M}\left(h_j^t, h_i^t, e_{ji}\right)
$$

$$
h_i^{(t+1)} = \mathcal{U}(h_i^{(t)}, m_i^{(t+1)})
$$
 (3)

Obtain the marginal distribution at T:

 $\hat{y} = \sigma(h^{(T)})$

Trained with $L(\hat{y}, y) = -y_i(x_i) \log(\hat{y}_i(x_i))$ \Rightarrow Update Functions

⇒ Soft Attention Mechanism

Message Node Mapping Message updates:

 \overline{m} $(t+1)$ $\frac{(t+1)}{i\to j}=\mathcal{M}$ $\bigg)$ $\overline{ }$ \sum $k \in N_i \setminus j$ h_k^t $_{k\rightarrow i}^{t},e_{ij}% ,\qquad\forall k\rightarrow j\in\mathbb{Z}^{+}.$ \setminus $\overline{ }$

(4)

 $(t+1)$

 $\frac{(t+1)}{i\rightarrow j}=\mathcal{U}(h)$

 $\hat{p}_i(X_i) = \mathcal{R}(h_i^T)$

Hidden State Updates:

Node Marginals:

$$
\hat{p}_i(X_i) = \mathcal{R}\left(\sum_{j \in N_i} h_{j \to i}^T\right) \qquad (6)
$$

 $\sum_{i \to i}^{(t+1)}$ to obtain the hidden vector states \boldsymbol{h} $(t+1)$ \boldsymbol{i} for a GNN node v_i at time $t + 1$:

Variable Node Mapping

Experiments & Results

Graphs

In Sample Performance

Combined Dataset Performance Inference Time

Conclusion & Future Developments

• GNN models are more robust to increasing graph complexity w.r.t. computation time • GNNs are great candidates when increasing the complexity of graph, with no significantly or consistantly optimal model

Potential Developments: applying attention during \mathcal{U} ; to other model structures (not Ising)

Acknowledgements

We acknowledge the work of Yoon et al., "Inference in Probabilistic Graphical Models by Graph Neural Networks", 2019, and the use of open-source code from https://github.com/sunfanyunn/FE-GNN/tree/master.