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Introduction
Problem: Performing inference tasks on graphs is HARD

It is possible on trees...
X Naïve Marginalization: in O(k|N |)

P (xi) =
∑

x1∈X1

. . .
∑

xN∈XN

P (x1, x2, . . . , xN )

✓Belief Propagation (BP) in O(|N |):

• Initiate message passing at
leaves

• Propagate and Store mes-
sages up to the root and back

... but not on graphs in general
Can approximate: run BP for t iterations,
BUT:

• May not converge, even as t→ ∞

• May not have a closed-form solution

• May not be accurate due to the complex
dependencies in graph

Research Question: How can we find better approximators for inference tasks in Probabilistic Graphical Models (PGMs)?

Background
Belief Propagation
Can be generalized to graphs with loops, i.e.
loopy BP :
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(2)
where Ni are the neighbors of variable node Xi

and Nα are the neighbors of factor nodes α

GNNs
Use a message passing method m(t+1)

i→ to obtain
the hidden vector states h(t+1)

i for a GNN node
vi at time t+ 1:
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t
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)
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h
(t+1)
i = U(h(t)i ,m

(t+1)
i )

Obtain the marginal distribution at T :

ŷ = σ(h(T ))

Trained with L(ŷ, y) = −yi(xi) log(ŷi(xi))
⇒ Update Functions

LSTM GRU

⇒ Soft Attention Mechanism

c′t = LeakyRelu(ei,j ∗A⊺ + b)

ct = softmax(c′t)
ei,j = ct ∗ e′i,j

PGM to GNN Mapping
Message Node Mapping
Message updates:

m
(t+1)
i→j = M

 ∑
k∈Ni\j

htk→i, eij


(4)

Hidden State Updates:

h
(t+1)
i→j = U(h(t)i→j ,m

(t+1)
i→j ) (5)

Node Marginals:

p̂i(Xi) = R

∑
j∈Ni

hTj→i

 (6)

Variable Node Mapping
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i ) (9)

p̂i(Xi) = R(hTi ) (10)

Experiments & Results
Graphs

Graph structure types: star, path, cycle, grid,
wheel, fc

In Sample Performance

Combined Dataset Performance Inference Time

Conclusion & Future Developments
• GNN models are more robust to increasing graph complexity w.r.t. computation time
• GNNs are great candidates when increasing the complexity of graph, with no significantly or

consistantly optimal model
Potential Developments: applying attention during U ; to other model structures (not Ising)
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