

Towards a Conditional Generative Model for Trajectory Modeling in Medical Imaging

Anita Kriz ECSE 556

Table of Contents

- 1. Introduction & Motivation
- 2. Background
- 3. Constraints
- 4. Objectives
- 5. Methodology
- 6. Results
- 7. Future Work

INO DO

Introduction & Motivation

Generative Models

DALL-E2: "photograph of an astronaut riding a horse"

DALL-E2: "an oil pastel drawing of an annoyed cat in a spaceship"

Why is there a need for generative models in (Multiple Sclerosis) Medical Imaging?

Disease Progression: Where in the Future?

Treatment Effect: Where in the Past?

Personalized Medicine: Where to now?

Constraints

Constraints in (Multiple Sclerosis) Imaging

- We want to generate **patient specific** images
- We want clinically relevant not random generation
- We want to distinguish between attributes that are often **highly correlated** (brain morphology and disease progression)

Objectives

Objectives

- 1. Generate images such that certain attributes (e.g., number of lesions) are changed
- 2. Preserve the attribute excluding details (e.g., brain identity, age)
- 3. Maintain realistic image generation

Background

Generative Adversarial Network (GAN)

IcGill

 $x_{real} \sim P_{real}(x)$

 $y_{real} = 1$

 $\min_{G} \max_{D} \left(E_{x \sim P_{data}(x)} [log D(x)] + E_{z \sim P_{z}(z)} [log(1 - D(G(z)))] \right)$

- Discriminator learns to distinguish between real and fake
- Generator learns to fool the discriminator

Generative Adversarial Network (GAN)

 $z \sim P(z)$

15

3 major improvements:

Mapping network f

W does not have to support sampling from fixed dist.

Adaptive Instance Normalization
 Inject style of y into content of x

$$AdaIN(x,y) = \sigma(y)(rac{x-\mu(x)}{\sigma(x)}) + \mu(y)$$

• Noise

Induce stochastic variation in the image

Overall idea:

By separating style from content, StyleGAN provides a strong baseline for a **disentangled latent space** where we can theoretically **control** different attributes of an image

Disentanglement for Conditional Generation

18

Can we apply this to Medical Imaging?

Methodology

Methodology Pipeline

21

Dataset & Resources

- Multiple Sclerosis with ~5500 patients and access to 16 GB GPUs were provided by the PVG Lab
- Code for a 3D StyleGAN was written at the PVG Lab and thus only needed to be converted to 2D

Methodology Pipeline

Perceptual Path Length (PPL)

cGill

Perceptual Path Length:

$$egin{aligned} l_{\mathcal{W}} &= \mathbb{E}\left[rac{1}{\epsilon^2}dig(ext{g(lerp}(f(\mathbf{z}_1),f(\mathbf{z}_2);\,t)),\ g(ext{lerp}(f(\mathbf{z}_1),f(\mathbf{z}_2);\,t+\epsilon))ig)
ight], \end{aligned}$$

Idea:

Quantify this distance, d, such that **perceptually** similar images achieve a low PPL score

VGG-16 Model

CONV 2-1 CONV 2-2 POOLING CONV 1-2 POOLING CONV 3-1 CONV 3-2 CONV 3-3 POOLING CONV 4-1 CONV 4-2 CONV 4-3 POOLING CONV 5-1 CONV 5-2 CONV 5-3 POOLING CONV 1-1 Feature FCC БĊ FCC Space

HI

Perceptual Path Length:

$$egin{aligned} \mathcal{W} &= \mathbb{E} \left[rac{1}{\epsilon^2} dig(ext{lerp}(f(\mathbf{z}_1), f(\mathbf{z}_2); t) ig), \ g(ext{lerp}(f(\mathbf{z}_1), f(\mathbf{z}_2); t+\epsilon)) ig)
ight], \end{aligned}$$

Idea:

Quantify this distance, *d* , such that **perceptually** similar images achieve a low PPL score

Solution:

- 1. Train a VGG-16 model
- 2. Use its final layer as a feature representation of the image
- 3. Find the distance between the feature vectors for PPL

Linear Separability

Idea:

- 1. Sample 200,000 points from z space and generate their images
- Classify them using a pre-trained classifier based on binary attributes (Y)
- 3. Discard the 100,000 least confident images
- 4. Fit a linear SVM to categorize latent space points (X)
- 5. Compute H(Y|X)

🐯 McGill

Methodology Pipeline

27

(b) Style-based generator

Results

Methodology Pipeline

30

PPL Metric: Training of VGG-16 Model

*Reminder: VGG-16 isn't being used to get the most accurate classifier, but rather a feature space corresponding to human perception

PPL Metric: Training of VGG-16 Model

*Reminder: VGG-16 isn't being used to get the most accurate classifier, but rather a feature space corresponding to human perception

PPL Metric: Comparison of our model with pre-trained VGG-16

StyleGAN Interpolations

- Intuitively, we expect that if we **linearly** interpolate in Z-space (Gaussian!), changes in the image space will **not** be smooth
- If overparameterized (too big latent space), model can learn smooth transitions
- Ideally, smaller latent space would mean more precise conditioning

StyleGAN Interpolations

- Intuitively, we expect that if we linearly interpolate in Z-space (Gaussian!), changes in the image space will not be smooth
- If overparameterized, model can learn smooth transitions

StyleGAN Interpolations: 512-dim latent

W SPACE

Z SPACE

StyleGAN Interpolations: 128 dim latent

W SPACE

Z SPACE

37

GAN Interpolations: 256-dim latent

Were McGill

38

Future Work

Future Work

- Try smaller latent space sizes...currently overparameterized
- Add linear separability metric (amongst others)
- Evaluate metrics for StyleGAN vs GAN architecture
- Add conditioning and see if disentanglement improves
- Perform inversions...

