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Introduction & Motivation
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Generative Models
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DALL-E2: 
“photograph of an astronaut riding a horse”

DALL-E2: 
“an oil pastel drawing of an annoyed cat in a spaceship”



Why is there a need for 
generative models in (Multiple 
Sclerosis) Medical Imaging? 
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Disease Progression: Where in the Future? 
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Treatment Effect: 
Where in the 

Past?
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Personalized Medicine: 
Where to now? 



Constraints
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Constraints in (Multiple Sclerosis) 
Imaging

• We want to generate patient specific images

• We want clinically relevant – not random - generation

• We want to distinguish between attributes that are often highly 
correlated (brain morphology and disease progression)
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Objectives
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Objectives
1. Generate images such that certain attributes (e.g., number of lesions) 

are changed 

2. Preserve the attribute excluding details (e.g., brain identity, age)

3. Maintain realistic image generation
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Background



Generative 
Adversarial 
Network (GAN)
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Generator

Discriminator

z ~ P(z)

xreal ~ Preal(x)
yreal = 1

xgen ~ Pgen(x)
ygen = 0

Is the 
image 
real or 
fake? 

ො𝑦 = D(x)

• Discriminator learns to distinguish 
between real and fake

• Generator learns to fool the 
discriminator

Fake – 
90% sure



Generative 
Adversarial 
Network (GAN)
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Generator

Discriminator

z ~ P(z)

xreal ~ Preal(x)
yreal = 1

xgen ~ Pgen(x)
ygen = 0

Is the 
image 
real or 
fake? 

ො𝑦 = D(x)

• Can now throw the Discriminator away

Real/Fake 
~50% sure
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Generator

Discriminator

z ~ P(z)

xreal ~ Preal(x)
yreal = 1

xgen ~ Pgen(x)
ygen = 0

Is the 
image 
real or 
fake? 

ො𝑦 = D(x)

• Discriminator learns to distinguish 
between real and fake

• Generator learns to fool the 
discriminator

Limitation: 
No explicit control of 

what is being generated!

Limitation: 
Z-space tied to predefined 

distribution



Overall idea:
By separating style from content, StyleGAN 

provides a strong baseline for a disentangled 
latent space where we can theoretically 
control different attributes of an image

StyleGAN
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3 major improvements:
• Mapping network f

W does not have to support sampling from fixed dist.

• Adaptive Instance Normalization
Inject style of y into content of x

• Noise
Induce stochastic variation in the image



Disentanglement for Conditional Generation
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Can we apply this to Medical Imaging? 
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Methodology



Methodology Pipeline
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Dataset & Resources

• Multiple Sclerosis with ~5500 patients and access to 16 GB GPUs were 
provided by the PVG Lab

• Code for a 3D StyleGAN was written at the PVG Lab and thus only 
needed to be converted to 2D 
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Methodology Pipeline
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Perceptual Path Length (PPL)
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Perceptual Path Length:

Idea:
Quantify this distance, 𝑑 , such that 

perceptually similar images achieve a 
low PPL score



VGG-16 Model
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At Inference
Solution:

1. Train a VGG-16 model 
2. Use its final layer as a feature 

representation of the image 
3. Find the distance between the feature 

vectors for PPL

During Training
Perceptual Path Length:

Idea:
Quantify this distance, 𝑑 , such that 

perceptually similar images achieve a 
low PPL score



Linear Separability
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Idea:
1. Sample 200,000 points from z space 

and generate their images
2. Classify them using a pre-trained 

classifier based on binary attributes 
(Y)

3. Discard the 100,000 least confident 
images

4. Fit a linear SVM to categorize latent 
space points (X)

5. Compute H(Y|X)



Methodology Pipeline
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Conditional model

Idea:
By conditioning, we can control for the 
attributes we want to add or remove



Results
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Methodology Pipeline

30



PPL Metric: Training of VGG-16 Model 
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*Reminder: VGG-16 isn’t being used to get the most accurate classifier, but rather a feature space corresponding 
to human perception



PPL Metric: Training of VGG-16 Model 
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*Reminder: VGG-16 isn’t being used to get the most accurate classifier, but rather a feature space corresponding 
to human perception



PPL Metric: Comparison of our model 
with pre-trained VGG-16
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StyleGAN Interpolations
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• Intuitively, we expect that if we linearly interpolate in Z-space (Gaussian!), changes in the image space 
will not be smooth 

• If overparameterized (too big latent space), model can learn smooth transitions 
• Ideally, smaller latent space would mean more precise conditioning

Latent Space Z



StyleGAN Interpolations
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• Intuitively, we expect that if we linearly interpolate in Z-space (Gaussian!), changes in the image space 
will not be smooth 

• If overparameterized, model can learn smooth transitions 

512-dim Latent space 128-dim Latent space



StyleGAN Interpolations: 512-dim latent
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W SPACE Z SPACE



StyleGAN Interpolations: 128 dim latent
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W SPACE Z SPACE



GAN Interpolations: 256-dim latent
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Future Work



Future Work

• Try smaller latent space sizes…currently overparameterized

• Add linear separability metric (amongst others) 

• Evaluate metrics for StyleGAN vs GAN architecture

• Add conditioning and see if disentanglement improves

• Perform inversions…
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